9

9

9

9

OBJECTIVES:

• To learn fundamental concepts of Stress, Strain and deformation of solids with applications to bars, beams and thin cylinders.

• To know the mechanism of load transfer in beams, the induced stress resultants and deformations.

- To understand the effect of torsion on shafts and springs.
- To analyse a complex two dimensional state of stress and plane trusses

UNIT I STRESS AND STRAIN

Stress and strain at a point – Tension, Compression, Shear Stress – Hooke"s Law – Relationship among elastic constants – Stress Strain Diagram for Mild Steel, TOR steel, Concrete – Ultimate Stress – Yield Stress – Factor of Safety – Thermal Stresses – Thin Cylinders and Shells – Strain Energy due to Axial Force – Resilience – Stresses due to impact and Suddenly Applied Load – Compound Bars.

UNIT II SHEAR AND BENDING IN BEAMS

Beams and Bending- Types of loads, supports – Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly varying load. Theory of Simple Bending – Analysis of Beams for Stresses – Stress Distribution at a cross Section due to bending moment and shear force for Cantilever, simply supported and overhanging beams with different loading conditions - Flitched Beams.

UNIT III DEFLECTION

Double integration method - Macaulay's methods - Area moment method - conjugate beam method for computation of slopes and deflections of determinant beams.

UNIT IV TORSION

Torsion of Circular and Hollow Shafts – Elastic Theory of Torsion – Stresses and Deflection in Circular Solid and Hollow Shafts – combined bending moment and torsion of shafts - strain energy due to torsion - Modulus of Rupture – Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – Leaf Springs – Springs in series and parallel – Design of buffer springs.

UNIT V COMPLEX STRESSES AND PLANE TRUSSES

2 D State of Stress – 2 D Normal and Shear Stresses on any plane – Principal Stresses and Principal Planes – Mohr's circle - Plane trusses: Analysis of plane trusses - method of joints - method of sections.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The students will have

- Thorough understanding of the fundamental concepts of stress and strain in mechanics of solids and structures.
- The ability to analyse determinate beams and trusses to determine shear forces, bending moments and axial forces.
- A sufficient knowledge in designing shafts to transmit required power and also springs for its maximum energy storage capacities.

TEXT BOOKS:

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.

REFERENCES:

- Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.
- Timoshenko.S.B. and Gere.J.M, "Mechanics of Materials", Van Nos Reinbhold, New Delhi 1995.
- 3. Vazirani.V.N and Ratwani.M.M, "Analysis of Structures", Vol I Khanna Publishers, New Delhi,1995.
- 4. Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 1997.
- 5. Ugural. A.C., "Mechanics of Materials", Wiley India Pvt. Ltd., New Delhi, 2013.

SUBJECT DESCRIPTION AND OBJECTIVES

The subject of Mechanics of Solids cuts broadly across all branches of engineering profession. At the end of this course, the student will have knowledge about behaviour of members subjected to various types of forces. The subject can be mastered best by solving numerous problems.

This subject deals with

- Stress, Strain
- Deformation of Solids
- States of Stresses
- Behavior of Thin Cylinders & Shells
- Loading on Beams
- Bending Theory
- Deflection of Beams
- Shear Stresses
- Torsion
- Springs
- Analysis of Truss

MICRO LESSON PLAN

WEEK	LECT.NO	TOPICS TO BE COVERED	TEXT / REFERENCE BOOK		
	UNIT I STRESS AND STRAIN				
Ι	1	Stress and strain at a point (AV CLASS)	T 1		
	2	Tension, Compression, Shear Stress, Hooke's Law			
	3	Relationship among elastic constants			
	4	Stress Strain Diagram for Mild Steel, TOR steel, Concrete			
	5	Ultimate Stress			
	6	Yield Stress			
	7	Factor of Safety			
II	8	Thermal Stresses			
	9	Thin Cylinders and Shells (AV CLASS)			
	10	Strain Energy due to Axial Force, Resilience			
	11	Stresses due to impact and Suddenly Applied Load			
	12	Compound Bars			
	UNIT II SHEAR AND BENDING IN BEAMS				
III	13	Beams and Bending			
	14	Types of loads, supports (AV CLASS)			
	15	Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load			
IV	16	Shear Force and Bending Moment Diagrams for statically determinate beam with UDL	T 1		
	17	Shear Force and Bending Moment Diagrams for statically determinate beam with uniformly varying load			
	18	Theory of Simple Bending (AV CLASS)			
	19	Analysis of Beams for Stresses			
	20	Stress distribution at a cross Section due to bending moment and shear force for Cantilever	T 1		

	1		
V	21	Stress distribution at a cross section due to	T 1
		bending moment and shear force for simply	
		supported	
		Stress distribution at a cross section due to	
	22	bending moment and shear force for overhanging	
		beams with different loading conditions	
	23	Problems	
	24	Flitched Beams	
		UNIT III DEFLECTION	
		Double integration method for computation of	
VI	25	slopes and deflections of determinant beams	T 1
	26	Problems	
	27	Problems	
	28	Problems	
		Macaulay's methods for computation of slopes and	
VII	29	deflections of determinant beams	
	30	Problems	
	31	Problems	
	32	Area moment method for computation of slopes	
		and deflections of determinant beams.	
	33	Problems	
VIII	34	Problems	
	35	Conjugate beam method for computation of slopes	
		and deflections of determinant beams.	
	36	Problems	
		UNIT IV TORSION	
	37	Torsion of Circular and Hollow Shafts	
IX	38	Elastic Theory of Torsion (AV CLASS)	T 1
	39	Stresses and Deflection in Circular Solid shafts	
	40	Stresses and Deflection in Circular hollow shafts	
	41	Combined bending moment	

X	42	Torsion of shafts			
	43	Strain energy due to torsion	-		
	44	Modulus of Rupture	_		
	45	Power transmitted to shaft , Shaft in series and parallel	T 1		
	46	Closed and Open Coiled helical springs (AV CLASS)	_		
XI	47	Leaf Springs, Springs in series and parallel	_		
	48	Design of buffer springs	_		
	UNIT V COMPLEX STRESSES AND PLANE TRUSSES				
	49	2 D State of Stress (AV CLASS)			
	50	2 D Normal Stresses on any plane	_		
	51	2 D Shear Stresses on any plane	_		
	52	Principal Stresses & Principal Planes	_		
	53	Mohr's circle	_		
XII	54	Problems			
	55	Plane trusses			
	56	Analysis of plane trusses (AV CLASS)			
	57	Method of joints			
	58	Problems			
	59	Method of sections			
	60	Problems			

PREPARED BY,

Prof. B. KANAGAPANDIAN,

HOD/CIVIL